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Treatment Effects

For Whom the Effect Holds

For most of this book, and indeed in the title, we have
stuck to the fiction that there is such a thing as the effect. As
though a treatment could possibly have a single effect—the same im-
pact on literally everybody! That might be plausible in, say, physics.
But in social science, everything affects everyone differently.1 1 If we’d just all become frictionless

spheres, social science would be way
easier. Downhill travel, too.

To give a very simple example, consider a drug designed to reduce
the rate of cervical cancer. This drug might be very effective! Perhaps
it reduces the rate of cervical cancer by half... for people with a cervix.
For people without a cervix, we can be pretty certain that the drug
has absolutely no effect on the rate of cervical cancer.2 2 Ugh, no fair.

So at the very least, the drug has two effects—one for people with
a cervix, and one for people without. But we don’t need to stop
there. Even if we just focus on people with a cervix, maybe the drug
is highly effective for some people and not very effective for others.
Something to do with body chemistry, or age, or dietary habits, who
knows? The point is we might have a whole bunch of effects! When-
ever we have a treatment effect that varies across a population (i.e., all
the time), we can call that a heterogeneous treatment effect. Heterogeneous treatment effect.

An effect of a treatment on an out-
come for which the effect itself varies
across the population.

We can actually think of each individual has having their own
treatment effect. Maybe the drug reduces the rate by 1% for you and
0% for me and .343% for the woman who lives next door to me.

We’re all unique, with different circumstances, lives, physiologies,
and responses to the world. Why would we start with an assumption
that any two of us would be affected in exactly the same way? It’s
more of a convenience than anything.

So what can we make of the idea that we have heterogeneous
treatment effects?

One thing we can try to do is to estimate those heterogeneous
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treatment effects! Instead of just estimating one effect, we can esti-
mate a distribution of effects and try to predict, for a given person
with a given set of attributes, what their effect might be.

This is a valid goal, and it is something that people try to do! This
idea is behind concepts you might have heard of like “personalized
medicine.” It’s also one thing that machine-learning types tend to
focus on when they get into the area of causal inference.3 3 If this kind of thing interests you, I

recommend that you go looking for
anything and everything that the duo
of Susan Athey and Guido Imbens
have worked on together.

However, in addition to being a valid goal and the subject of some
extremely cool work, it also gets highly technical very quickly. So in
this chapter, we will instead focus on the other thing we can do with
the concept of heterogeneous treatment effects: ask “if effects are so
heterogeneous, then what exactly are we identifying anyway?”

After all, we’ve established in the rest of this book that we can
identify causal effects if we perform the right set of adjustments. But
whose causal effects are those? How can we tell?

It turns out that, if we’ve done our methods right, what we get is
some sort of average of the individual treatment effects. However, it’s
often not the kind of average where everyone gets counted equally.

Different Averages

What we have is the concept that each person has their own treat-
ment effect. That means that we can think of there as being a distri-
bution of treatment effects. This works just like any other distribution Treatment effect distribution.

The distribution of the individual
effect of treatment across the sample
or population.

of a variable, like back in Chapter 3. The only difference is that we
don’t actually observe the treatment effects in our data. So this is a
theoretical distribution of some sort.

And like any typical distribution, we can describe features of it, like
the mean.

The mean of the treatment effect distribution is called, for reasons
that should be pretty obvious, the average treatment effect. The av- Average treatment effect. The

mean of the treatment effect distribu-
tion.

erage treatment effect, often referred to as the ATE, is in many cases
what we’d like to estimate. It has an obvious interpretation—if you
impose the treatment on everyone, then this is the change the average
individual will see. If the average treatment effect of taking up gar-
dening as a hobby is an increase of 100 calories eaten per day, then if
everyone takes up gardening, some people will see an increase of less
than 100 calories, some will see more, but on average it will be 100
calories extra per person.

However, estimating the average treatment effect is not always
feasible, or in some cases even desirable.

Let’s use the cervical cancer drug as an example. In truth, the drug
will reduce Terry’s chances of cervical cancer by 2 percentage points
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and Angela’s by 1 percentage point, but Andrew and Mark don’t have
cervices so it will reduce their chances by 0. The average treatment
effect is (.02 + .01 + 0 + 0) = .0075, or .75 percentage points.

Now, despite your repeated pleas to the drug company, they refuse
to test the drug on people without cervices, since they’re pretty darn
sure it won’t do anything. They get a whole bunch of people like
Terry and Angela and run a randomized experiment of the drug. They
find that the drug reduces the chances of cervical cancer by, on aver-
age, (.02 + .01) = .015, or 1.5 percentage points.

That’s not a wrong answer but it’s definitely not the average treat-
ment effect among the population.4 So if it’s not the population av- 4 It is the average treatment effect

among their sample, but we certainly
wouldn’t want to take that effect and
assume it works for Andrew or Mark!

erage treatment effect, what is it? We will want to keep in our back
pocket some ideas of other kinds of treatment effect averages we might
go for or might identify.

There are lots and lots and lots of different kinds of treatment
effect averages,5 but only a few important ones we really need to 5 I even have one of my own! It’s

called SLATE and it’s not very widely
used but it’s super duper cool and
the way it works is hey where are you
going?

worry about. They fall into two main categories: (1) treatment effect
averages where we only count the treatment effects of some people but
not others, i.e. treatment effect averages conditional on something,
and (2) treatment effect averages where we count everyone, but we
count some individuals more than others.6 6 Technically, (1) is just a special

case of (2) where some people count
100% and other people count 0%. But
conceptually it’s easier to keep them
separate.

What happens when we isolate the average effect for just a
certain group of people? And how might we do it?

To answer this question, let’s make some fake data. This will be
handy because it will allow us to see what is usually invisible—what
the treatment effect is for each person.

Once we have our fake data, we will be able to: (a) discuss how
we can take an average of just some of the people, and (b) give an
example of how we could design a study to get that average.

Name Gender Outcome
Without
Treatment

Outcome
With Treat-
ment

Treatment
Effect

Alfred Male 1 2 1
Brianna Female 1 5 4
Chizue Female 2 5 3
Diego Male 2 4 2

Table 10.1: Fake Data For Four
Individuals

We can see from Table 10.1 that these four individuals have differ-
ent effects of the outcome. Keep in mind these are counterfactuals—
we can’t possibly see someone both treated and untreated. The table
just describes what we would see under treatment or no treatment. If
nobody were treated, then Alfred and Brianna would have an outcome
of 1, and Chizue and Diego would have an outcome of 2. But with
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treatment, Alfred jumps by 1, Brianna by 2, Chizue by 3, and Diego
by 4. The average treatment effect is (1 + 4 + 3 + 2)/4 = 2.5.

One common way we get an average effect for only a cer-
tain group is to literally pick a certain group. Notice in Table 10.1
that we have men and women. Let’s say we run an experiment but
only recruit men in our experiment for whatever reason.7 So we get a 7 Perhaps we are a labor economist

from the 1980s, or a biologist using
mice from the... very recent past.

bunch of guys like Alfred and a bunch of guys like Diego and we ran
domly assign them to get treatment or not. Our data ends up looking
like Table 10.2.

Name Treated Outcome
Alfreds Treated 2
Alfreds Untreated 1
Diegos Treated 4
Diegos Untreated 2

Table 10.2: Men-Only Experiment

Then, using Table 10.2, we calculate the effect. We find that the
treated people on average had an outcome of (2 + 4)/2 = 3, and the
untreated had (1 + 2)/2 = 1.5 and conclude that the treatment has an
effect of 3 − 1.5 = 1.5. This is, of course, the average of Alfred’s and
Diego’s treatment effect, (1 + 2)/2 = 1.5. So we have an average treat-
ment effect among men, or an average treatment effect conditional on
being a man.

Conditional average treatment
effect. An average treatment effect
conditional on the value of a variable.

Again, this isn’t a wrong answer. It just represents only a certain
group and not the whole population. It’s only a wrong answer if we
think it applies to everyone.

Another common way in which the average effect is taken
among just one group is based on who gets treated. Based
on the research design, we might end up with the average treatment on
the treated (ATT) or the average treatment on the untreated (ATUT),
which averages the treatment effects among those who actually got
treated (or not).

Average treatment on the
treated. The average treatment
effect among those who actually
received treatment.

Average treatment on the un-
treated. The average treatment
effect among those who did not actu-
ally receive treatment.

To see how this works, imagine that we can’t randomize anything
ourselves, but we happen to observe that Alfred and Chizue get
treated, but Brianna and Diego did not. We do our due diligence of
drawing out the diagram and notice that being assigned to treatment
is unrelated to the outcome.8 So we’re identified! Great.

8 Knowing the secret counterfactuals
that we do, we can see that the
average outcome if treatment had
never happened is exactly (1 + 2)/2 =

1.5 for both the treated and untreated
groups. In other words, there are no
back doors between treatment and
outcome. The differences arise only
because of treatment!

Name Treated Outcome
Alfred Treated 2
Brianna Untreated 1
Chizue Treated 5
Diego Untreated 2

Table 10.3: Assigning Alfred and
Chizue to Treatment
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What do we get in our actual data? We can see in Table 10.3 that
we get an average of (2 + 5)/2 = 3.5 among the treated people, and
(1 + 2)/2 = 1.5 among the untreated people, giving us an effect of
3.5 − 1.5 = 2. This also happens to be the average of Alfred’s and
Chizue’s treatment effects, (1 + 3)/2 = 2. In other words, we’ve taken
the average treatment effect among just the people who actually got
treated. ATT!9 9 You can imagine how the ATT

might crop up a lot. After all, we
only see people getting treated if
they’re... actually treated. It’s almost
hard to imagine how we could get
anything else. How can we possibly
ever get the average treatment effect,
rather than the ATT, if we can’t see
what the untreated people are like
when treated? Well, it comes down
to setting up conditions where we
can expect that the treatment effect
is the same in treated and untreated
groups. In this example, they clearly
aren’t! But if we truly randomized
over a large group of people, there’s
no reason to believe the treated and
untreated groups would have different
effect distributions, so we’d have an
ATE.

It’s a bit harder to imagine how we might get the average treatment
effect among the untreated (ATUT). And indeed this one doesn’t
show up a lot. But the basic idea is that you take what you know
about the treatment effect distribution and try to construct one for
the untreated group.

For example, say we get a sample of 1000 Alfreds and 1000 Bri-
annas, where 400 Alfreds and 600 Briannas have been assigned to
treatment on a basically-random basis, leaving 600 Alfreds and 400
Briannas untreated.

The average outcome for treated people will be (400 × 2 + 600 ×
5)/1000 = 3.8, and for untreated people will be 1. However, we can
run our analysis an extra two times, once just on Alfreds and once just
on Briannas, and find that the average treatment effect conditional
on being Alfred appears to be 1, and the average treatment effect
conditional on being Brianna appears to be 4. Since we know that
there are 600 untreated Alfreds and 400 untreated Briannas, we can
work out that the average treatment on the untreated is (600 × 1 +

400× 4)/1000 = 2.2. ATUT!
One other way in which a treatment effect can focus on just a par-

ticular group is with the marginal treatment effect. The marginal Marginal treatment effect. The
treatment effect of the next person
who would get treatment if treatment
rates expanded.

treatment effect is the treatment effect of a person who is just on the
margin of either being treated or not treated. This is a handy con-
cept if the question you’re trying to answer is “should we treat more
people?” I won’t go too much into the marginal treatment effect here,
as actually getting one can be a bit tricky. But it’s good to know the
idea is out there.

Instead of focusing our average just on a group of peo-
ple, what if we include everyone, but perhaps weight some people
more than others? We can generically think of these as being called
“weighted average treatment effects.” Weighted average treatment

effect. An average of individual
treatment effects where different
individuals count more than others
in the average. Each individual has a
“weight.”

In general, a weighted average is a lot like a mean. Let’s go back to
the average treatment effect—that was just a mean. The mean of 1,
2, 3, and 4 is (1 + 2 + 3 + 4)/4 = 2.5, as you’ll recall from our fake
data, reproduced below. Now, let’s not change that calculation, but
just recognize that 1 = 1× 1, 2 = 2× 1, and so on.

Now the mean is (1×1+2×1+3×1+4×1)/(1+1+1+1) = 2.5. Here,
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Name Gender Outcome
Without
Treatment

Outcome
With Treat-
ment

Treatment
Effect

Alfred Male 1 2 1
Brianna Female 1 5 4
Chizue Female 2 5 3
Diego Male 2 4 2

Table 10.4: Fake Data For Four
Individuals

everyone’s number is getting multiplied by 1, and that’s the same 1 for
everybody.

But what if people got different numbers besides 0 and 1?
Continuing with the same example, let’s say for some reason that we
think Brianna should count twice as much as everyone else, and Diego
should count half as much. Now our weighted average treatment effect
is (1× 1 + 4× 2 + 3× 1 + 2× .5)/(1 + 2 + 1 + .5) = 2.89.

Of course, in general we aren’t going to just decide that some peo-
ple should count more and weight them up!10 There’s going to be 10 Unless you’re using survey

weights—that’s a whole other story.something about the design that weights some people more than oth-
ers.

A common way this shows up is as variance-weighted average treat-
ment effects. Statistics is all about variation. And the relationship Variance-weighted average treat-

ment effect. A treatment effect
average where the kinds of people
with lots of variation in treatment left
after closing back doors are counted
more heavily.

between Y and X is a lot easier to see if X moves around a whole lot!
If you don’t see a lot of change in X, then it’s hard to tell whether
changes in Y are related to changes in X because, well, what changes
in X are we supposed to look for exactly? What’s the relationship
between living on Earth and your upper-body strength? Statistics
can’t help there, because pretty much everybody we can sample lives
on Earth. We don’t see a lot of people living elsewhere, so we can’t
observe how it makes them different to live elsewhere.

As a result, if some kinds of people have a lot of variation in treat-
ment while others don’t, our estimate may weight the treatment effect
of of those with variation in treatment more heavily, simply because
we can see them both with and without treatment a lot.

Let’s say that we get a sample of 1,000 Briannas and 1,000 Die-
gos. For whatever reason, half of all Briannas have ended up getting
treatment, but 90% of Diegos have. So our data looks like Table 10.5.

Name N Treated Outcome
Brianna 500 Treated 5
Brianna 500 Untreated 1
Diego 900 Treated 4
Diego 100 Untreated 2

Table 10.5: Briannas and Diegos get
Treatment at Different Rates
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Now, we can’t just compare the treated and untreated groups be-
cause we have a back door! “Being a Brianna / Being a Diego” is re-
lated both to whether you’re treated, and to the outcome (notice that
their outcomes would be different if nobody got treated). So we want
to close that back door. One way we can do that is by subtracting out
mean differences between Brianna and Diego, both for the outcome
and the treatment.

When we do this, and reevaluate the treatment effect, we get an ef-
fect of 3.47.11 This is closer to Brianna’s treatment effect of 4 than to 11 The math to get here gets a little

sticky, although you can refer to the
Conditional Conditional Means sec-
tion of Chapter 4, or to Chapter 15.
But basically, we subtract Brianna’s
outcome average of 3 from her out-
comes, giving treated Briannas a 2
outcome and Untreated Briannas a
-2 outcome, and her 50% treatment
from her treatments, giving treated
Briannas a “.5 treatment” and un-
treated Briannas a “-.5 treatment”.
Similarly, treated/untreated Diegos
get .2/-1.8 for outcome and .1/-.9
for treatment. Fitting a straight line
on what we have left tells us that a
one-unit change in treatment gets a
3.47 change in outcome.

Diego’s treatment effect of 2. We’re weighting Brianna more heavily.
Specifically, we are weighting her by the variance in her treatment.
The variance in treatment among Briannas is .5 × .5 = .25.12. The

12 The variance of a binary vari-
able is always (probability it’s
1)×(probability it’s 0)—that’s worth
remembering!

variance in treatment among Diegos is .9 × .1 = .09. The weighted
average, then, is (.25× 4 + .09× 2)/(.25 + .09) = 3.47.

Our estimate of 3.47 is closer to Brianna’s effect (4) than Deigo’s
(2) because we see a lot of her both treated and untreated, whereas
Diego is mostly treated. Less variation in treatment means we can see
the effect of that variation less! Note also that Diego counts less even
though we see a lot of treated Diegos—this isn’t the average treatment
on the treated. We know we’re getting a variance-weighted average
treatment effect rather than the average treatment on the treated,
because if we were getting ATT, we’d be closer to Diego and farther
from Brianna.

Weighted average treatment effects pop up a lot whenever we start
closing back doors. When we close back doors, we shut out certain
forms of variation in the treatment. The people who really count are
the ones who have a lot of variation left!

Variance-weighted treatment effects of course aren’t the only kind
of weighted average treatment effect. For example, if you close back
doors by selecting a sample where the treated and untreated groups
have similar values of variables on back door paths (i.e., picking un-
treated observations to match the treated observations), you end up
with distribution-weighted average treatment effects, where individuals
with really common values of the variables you’re matching on are
weighted more heavily.

Another form of weighted treatment effects that pops up
often is based on how responsive treatment is.

In Chapter 9 we discussed the different ways that we can isolate
just part of the variation in treatment. We either focus just on the
part of the data in which treatment is determined exogenously (like
running an experiment, and only including data from the experiment
in your analysis) or use some source of exogenous variation to predict
treatment, and then use those predictions instead of your actual data
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on treatment.
Of course, heterogeneous treatment effects don’t only apply to the

effect of treatment on an outcome. They can also apply to the effect of
exogenous variation on treatment!

For example, suppose you’re running a random experiment about
diet where the treatment is having to eat 100 fewer calories per day
than you normally would, and the outcome is your weight. Some
people have pretty good willpower and control over their diet. If you
tell them to eat less, they can do that. If you tell them to keep doing
what they normally do, they can do that too.

Other people have less willpower (or less interest in satisfying a
researcher).13 They might only eat 90 fewer calories per day when 13 Or it’s the middle of a pandemic

and the Hot Cheetos are right there in
the pantry.

told to eat 100 less. Or 50. Or 5. Or 0. Maybe a few people will be
disappointed by being assigned to the “continue as normal” treatment
and will cut their calories anyway.

So for some people, being assigned to treatment makes them eat
100 fewer calories. For some people it’s 90, or 50, 0, or 10 more calo-
ries, or whatever. Heterogeneous treatment effects, but this time for
the effect of treatment assignment on treatment, rather than the effect
of treatment on outcome!

Naturally, if we limit our data to just the people in our experiment
and look at the impact of the experiment, it’s going to give us strange
results.

When this happens—we have exogenous variation but not every-
body followed it, we limit our data to just the people in our experi-
ment, and we look at the relationship between treatment assignment
and the outcome— what we get is called the intent-to-treat estimate.14 14 More broadly, when we have exoge-

nous variation of some sort driving
treatment, and we look directly at the
relationship between that exogenous
variation and the outcome.
Intent to treat. The average treat-
ment effect of assigning treatment,
which is not necessarily the same
as the average treatment effect of
treatment.

Intent-to-treat is basically the effect of assigning treatment, although
not the effect of treatment itself, since not everybody follows the as-
signment.

Intent-to-treat gives us the average treatment effect of assignment,
which is usually not what we want.15 What does it give us for the

15 Unless we’re going to use that same
assignment in the real world. If I’m
using “a policy that forces insurers
to cover therapy” to understand
the effect of therapy on depression,
maybe I do want to know the effect
of that policy, rather than the effect
of therapy itself, since I have more
control as a policymaker over that
policy than I do over therapy.

effect of treatment? It’s not exactly a weighted average treatment
effect at that point. It does weight each person’s treatment effect by
the proportion of their treatment effect they received.16 So if you got

16 In most cases, this is just “actually
got the treatment” or “didn’t” so it’s
just 0 and 1.

enough treatment to get 50% of its effects, you get a weight of .5. This
weighting makes a lot of sense—if you get the full treatment, we see
the full effect of your treatment when we start adding up differences.
If you don’t get the treatment you were assigned to, we still include
you in our addition, but it couldn’t have had an effect so you get a
0.17

17 All of this applies even if treatment
isn’t 0/1! In those cases the weights
are “how much more treatment you
got.”

The thing that makes it not exactly a weighted treatment effect
is that instead of dividing by the sum of the weights, you divide by
the number of individuals. In a weighted average treatment effect, a
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weight of 0 (you didn’t respond to assignment at all) wouldn’t affect
the weighted average treatment effect. But in intent-to-treat, someone
with a weight of zero has no effect on the numerator, but they do
affect the denominator, bringing the effect closer to 0.

Name Gender Outcome
Without
Treatment

Outcome
With Treat-
ment

Treatment
Effect

Alfred Male 1 2 1
Brianna Female 1 5 4
Chizue Female 2 5 3
Diego Male 2 4 2

Table 10.6: Fake Data For Four
Individuals

Returning to our fake data once more, if we recruited two Chizues
and two Diegos and treated one of each, but Chizue went along with
assignment while Diego decided never to receive treatment, then in
the treatment-assigned group we’d see Chizue’s 5 and Diego’s 2 (since
Diego was never actually treated), and in the treatment-not-assigned
group we’d see Chizue’s 2 and Diego’s 2. The calculated effect would
be (3.5− 2) = 1.5. This is also (3× 1 + 3× 1 + 2× 0 + 2× 0)/(1 + 1 +

1 + 1) = 1.5, or the effect of the two Chizues weighted by 1 (since they
receive full treatment when assigned) plus the effect of the two Diegos
weighted by 0 (since they never receive any treatment), divided by the
number of people (4).

What if we take the other approach to finding front doors, where
we use some source of exogenous variation to predict treatment, and
then use those predictions instead of your actual data on treatment?

This turns out to do something very similar to the intent-to-treat.
However, because this approach doesn’t just say “were you assigned
treatment or not?” but rather “how much more treatment do we think
you got due to assignment?” we can now replace that “number of
people” denominator with a “how much more treatment was there?”
denominator.

Since “how much more treatment” was also our weight in the nu-
merator, we’re back to an actual weighted average treatment effect!
Specifically, the weights are how much additional treatment each in-
dividual would get if assigned to treatment. We call this one the local
average treatment effect (LATE). Local average treatment effect.

A weighted average treatment effect
where the weights are how much more
treatment that individual would get if
assigned to treatment.

For example, let’s go back to Chizue and Diego, and Diego not
going along with his treatment assignment. We look at assignment
and at treatment, and notice that being assigned to treatment only
seems to increase treatment rates by 50% (in the not-assigned group,
nobody is treated; in the assigned group, 50% are treated). Based on
that prediction, we expect to see only half of the treatment effect, and
we can get back to the full treatment effect by dividing by .5.
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This gives us an effect estimate of (3.5 − 2)/.5 = 3. We can also
get this 3 from (3 × 1 + 3 × 1 + 2 × 0 + 2 × 0)/(1 + 1 + 0 + 0) = 3,
which is the 3 effect of the two Chizues, each with a weight of 1 (since
assignment increases their treatment from 0 to 1), and the 2 effect
of the two Diegos, each with a weight of 0 (since assignment doesn’t
affect their treatment).

In other words, the LATE is a weighted average treatment effect
where you get weighted more heavily the more strongly you respond
to exogenous variation.18 This is kind of a strange concept—why 18 It is common in an econometrics

class to hear that the LATE is “the
average treatment effect among those
who respond to assignment” and
you might hear those who respond
called “compliers.” However, this is a
simplification. If one person responds
fully to assignment and another only
has half a response, the LATE will
not average them equally, even though
both are compliers. It will weight the
full-response person twice as much as
the half-response person.

would we want to weight people who respond to irrelevant exogenous
variation more strongly? Well, maybe we don’t. But the LATE still
looms large because it happens to be the weighted average treatment
effect that pops up in a lot of research designs. Maybe not what you
want, but what you get.

And along those lines, what do you get? How do we know, for a
given research design, which of these treatment effect estimates we will
end up with?

I Just Want an ATE, It Would Make Me Feel Great, What Do
I Get?

By this point we know that there are far more ways to get a single
representative treatment effect than just averaging them (to get the
average treatment effect), due to the fact that we have heterogeneous
treatment effects. We can get the treatment effect just for certain
groups, we can weight some individuals more heavily than others, we
can weight people based on how the treatment was assigned.

Now, usually (not always), what we want is the average treatment
effect—the effect we’d see on average if we took a single individual
and applied the treatment to them.19 The reason we bring up most of 19 Why might we not always want

this? It depends what question we’re
trying to answer. If we want to know
“what was the actual effect of this
historical policy?” then we might
want to know what effect treatment
had on the people it actually treated
(ATT). If we want to know “what
would be the effect if we treated
more people?” we might want the
treatment on the untreated (ATUT)
or the marginal treatment effect. If we
want to know “is this more effective
for men or women?” we would want
some conditional treatment effects.
And so on.

those other treatment effects at all is that we don’t always get what
we want!

The treatment effect you get isn’t necessarily a choice you make.
It’s a consequence of the research design you have. And since there
aren’t usually multiple available research designs that you can use to
answer a given question, you’re often stuck with the treatment effect
average you get.

So for a given research design, which one do we get?

The treatment effect we get is almost entirely deter-
mined by the source of treatment variation we use. That’s
pretty much it. Ask where the variation in your treatment is coming
from,20 and you’ll have a pretty good idea whose treatment effects you 20 After removing any variation you

choose to remove by controlling for
things, etc.
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are averaging, and who is being weighted more heavily.
We’ve already discussed one example of this. If we perform a ran-

domized experiment, then we will be ignoring everyone who isn’t
in our experiment. The only treatment variation we are allowing is
among the people in our sample—any variation outside our sample is
ignored. If our sample isn’t representative of the broader population,21 21 And thus doesn’t have the same av-

erage treatment effect as the broader
population.

then we will be getting the average treatment effect conditional on
being in our sample, a conditional average treatment effect.

Let’s take another example. Let’s say we’re interested in the effect
of being sent to traffic school on your future driving performance.
Let’s also say that we know there are only two reasons anyone goes to
traffic school: making a terrible driving mistake, or having someone
else make a terrible driving mistake that you are somehow punished
for. This gives us the diagram in Figure 10.1.

OthersBadDriving YourBadDriving

TrafficSchool YourFutureDriving

Figure 10.1: Going to Driving School

Recognizing the clear TrafficSchool ← YourBadDriving → Your-
FutureDriving back door, we decide to identify the effect by measuring
and controlling for your own bad driving skills.

This will identify the effect, but it will also shut out any variation
in TrafficSchool that’s driven by YourBadDriving. So imagine two
people, Rodney and Richard. Rodney has a 50% chance of not going
to TrafficSchool, a 10% chance of going because of someone else’s bad
driving, and a 40% chance of going because of his own bad driving.
Richard has a 50% chance of not going to TrafficSchool, a 30% chance
of going because of someone else’s bad driving, and a 20% chance of
going because of his own bad driving.

We’re tossing out that 40% for Rodney and 20% for Richard
chances of going because of their own bad driving. There’s only a
10% chance that Rodney goes to TrafficSchool for the reason we still
allow to count, and similarly a 30% chance for Richard. That means
there’s more remaining variation in treatment for Richard than for
Rodney, so Richard’s treatment effect will be weighted more heavily
than Rodney’s will. A weighted average treatment effect!

Following this logic—which treatment variation do we
allow to count—will tell us just about every time which treatment
effect we’re about to get.

We can go a little bit further and apply this logic ahead of time
to develop some rules of thumb. These are just shortcuts to applying
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that same logic, but they’re often easier to think about, and they work
most of the time.

Rule of thumb 1: If you have true randomization in a representative
sample and don’t need to do any adjustment, you have an average
treatment effect (ATE).

Rule of thumb 2: If you have true randomization only within a
certain group, and you isolate that group so you can take advantage of
that randomization, you have a conditional average treatment effect.

Rule of thumb 3: If you know that some variation in treatment
is connected to back doors and so you close those back doors, using
only the remaining variation, you have a weighted average treatment
effect—variance-weighted if you’re subtracting out explained varia-
tion, or weighted by how representative the observations are if you’re
picking a subsample of the data or picking control observations by
matching them with treated observations.

Rule of thumb 4: If we are identifying our effect by assuming
that the untreated group is what the treated group would look like
if they hadn’t been treated, but not assuming they both have the same
treatment effects, then we have the average treatment on the treated
(ATT).

Rule of thumb 5: If part of the variation in treatment is driven by
an exogenous variable, and we isolate just the part driven by that
exogenous variable, then we have a local average treatment effect
(LATE).

Who Cares?

It seems almost beyond the point to worry too much about
which kind of treatment effect average we get, doesn’t it? After all,
we’ve gone to all the work of identifying the effect in the first place.
And each of these are averages of the actual treatment effects. Why
should it matter?

We should care because we’re interested in understanding causal
relationships in the world!

The reason for paying attention to treatment effect averages (and
which ones we are getting) is very clear if the reason we care about
causal effects is that we want to know what will happen if we inter-
vene.

Think way back to when we were defining causality back in Chapter
6—one way we talked about it was in the form of intervention. If we
were to intervene to change the value of X, and Y changes as a result,
then X causes Y .

This approach to causality is one reason why we care about getting
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causal effects in the first place. It’s useful! If we know that X causes
Y , then if we want to improve Y , we can change X! If aspirin reduces
headaches, and you have a headache, then take an aspirin. We know
what will happen because we’ve established the causal relationship.

Bringing in treatment effect averages changes considerably what we
can infer about what will happen based on the estimates we get in our
analysis.

For example, let’s say we suspect that the presence of lead in the
drinking water has resulted in increased crime.22 If we find evidence 22 Which it might well do! See for

example Reyes (2007).that lead in the drinking water does cause crime to rise, what would
we use that information to do? Probably get the lead out of the drink-
ing water, right?

However, what if it doesn’t reduce crime for everyone? Let’s say we
found a number of localities that won government grants, awarded at
random, to clean up the lead in their water. But among the localities
that applied for the grants, there was no change in crime rates that
followed. Perhaps their crime rates were already very low, or only
localities with lead levels already too low to have an effect were the
ones who applied for the grant.

In the case of this study, we got an average treatment effect con-
ditional on being in the study. That conditional average treatment
effect misrepresented the average treatment effect that we would get
if we reduced lead levels in everyone’s drinking water. If we don’t pay
attention to which treatment effect average we’re getting, we might
erroneously think that the effect is zero for everyone.

This can go the other way too, where we estimate an aver-
age treatment effect but don’t want that! For example, imagine you
develop a new (and you think better) vaccine for the measles. You
study your new vaccine with an experiment in the United States. And
because you want to get a really representative average effect, you
do a very careful job randomly recruiting everyone into your study,
sampling people from all walks of life completely at random. For sim-
plicity, let’s assume nobody refuses being in your study.

This approach—selecting people completely at random and nobody
opting out of the study—will give us an average treatment effect (at
least in the United States).

Then you get the results back and you’re shocked! The vaccine
reduces the chances of measles, but only by a few tenths of a percent.

Well, that’s probably because in the United States, north of 90% of
people already have a measles vaccine, so your vaccine won’t do much
extra for them. What you wanted was the average treatment effect
conditional on not already having had a measles vaccine.23 23 Strangely, this does not count as an

average treatment on the untreated.
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In general, what you want is to think about what intervention
would look like, whether it will be in the form of a policy that could
be considered (changing how vaccinations occur, reducing lead for
everyone, etc.) or in understanding how the world works (wages are
going up for group X; what is the effect of wages on home ownership
among group X?).

Once we know what intervention looks like, we want a treatment
effect average that will match it. Planning to apply treatment to ev-
eryone, or at random? The average treatment effect is what you want!
Just to a particular group? The conditional average treatment effect
for that group. Wanting to expand an already-popular treatment to
more people? Probably want the average treatment on the untreated
or a marginal treatment effect. Planning to continue a policy that
people opt into? Average treatment on the treated!

Understanding not just the overall effect, but who that effect is for,
really fills in the gaps on making information from causal inference
useful.

Treatment Effect Glossary

We’ve talked about a whole lot of different kinds of treatment effects.
Let’s remind ourselves what they are.

Average Treatment Effect. The average treatment effect across
the population.

Average Treatment on the Treated. The average treatment
effect among those who actually received the treatment in your study.

Average Treatment on the Untreated. The average treatment
effect among those who did not actually receive the treatment in your
study.

Conditional Average Treatment Effect. The average treat-
ment effect among those with certain values of certain variables (for
example, the average treatment effect among women).

Heterogeneous Treatment Effect. A treatment effect that
differs from individual to individual.

Intent-to-Treat. The average treatment effect of assigning treat-
ment, in a context where not everyone who is assigned to receive
treatment receives it (and vice versa).

Local Average Treatment Effect. A weighted average treatment
effect where the weights are based on how much more treatment an
individual would get if assigned to treatment than if they weren’t
assigned to treatment.

Marginal Treatment Effect. The treatment effect of the next
individual that would be treated if treatment were expanded.

Weighted Average Treatment Effect. A treatment effect aver-
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age where each individual’s treatment effect is weighted differently.
Variance-Weighted Average Treatment Effect. A treatment

effect average where each individual’s treatment effect is weighted
based on how much variation there is in their treatment variable, after
closing back doors.

Chapter Problems

1. The glossary is just above this section. But ignore it for a moment.
Define in your own words each of the following terms:

(a) Conditional average treatment effect
(b) Average treatment on the treated
(c) Average treatment on the untreated

2. Provide an example of a treatment effect that you would expect to
be highly heterogeneous, and explain why you think it is likely to
be heterogeneous.

3. Consider the data below in Table 10.7 that shows the hypothetical
treatment effect of cognitive behavioral therapy on depression for
six participants. For the sake of this example, the six participants
represent the population of interest.

Case Age Gender Effect
A 15 Man 7
B 40 Woman 3
C 30 Woman 7
D 20 Non-binary 8
E 15 Man 7
F 25 Woman 4

Table 10.7: Six Hypothetical Treat-
ment Effects

(a) What is the overall average treatment effect for the population?
(b) What is the average treatment effect for Women?
(c) If nearly all Non-binary people get treated, and about half of

all Women get treated, and we control for the differences be-
tween Women and Non-binary people, what kind of treatment
effect average will we get, and what can we say about the numer-
ical estimate we’ll get?

(d) If we assume that, in the absence of treatment, everyone would
have had the same outcome, and also only teenagers (18 or
younger) ever receive treatment, and we compare treated peo-
ple to control people, what kind of treatment effect average will
we get, and what can we say about the numerical estimate we’ll
get?



180 the effect

4. Give an example where the average treatment effect on the treated
would be more useful to consider than the overall average treatment
effect, and explain why.

5. Which of the following describes the average treatment effect of
assigning treatment, whether or not treatment is actually received?

(a) Local average treatment effect

(b) Average treatment on the treated

(c) Intent-to-treat

(d) Variance-weighted average treatment effect

6. On weighted treatment effects:

(a) Describe what a variance-weighted treatment effect is

(b) Describe what a distribution-weighted treatment effect is

(c) Under what conditions/research designs would we get each of
these?

7. Suppose you are conducting an experiment to see whether pricing
cookies at $1.99 versus $2 affects the decision to purchase the cook-
ies. The population of interest is all adults in the United States.
You recruit people from your university to participate and random-
ize them to either see cookies priced as $1.99 or $2, then write down
whether they purchased cookies. What kind of average treatment
effect can you identify from this experiment?

8. For each of the following identification strategies, what kind of
treatment effect(s) is feasible to identify? Provide rationales for
your answers.

(a) A randomized experiment using a representative sample

(b) True randomization within only a certain demographic group

(c) Closing back door paths connected to variation in treatment

(d) Isolating the part of the variation in treatment variable that is
driven by an exogenous variable

(e) The control group is comparable to the treatment group,but
treatment effects may be different across these groups
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